TALEN-induced disruption of Nanog expression results in reduced proliferation, invasiveness and migration, increased chemosensitivity and reversal of EMT in HepG2 cells.

نویسندگان

  • Ai Qing Yu
  • Yan Ding
  • Cheng Lin Li
  • Yi Yang
  • Shi Rong Yan
  • Dong Sheng Li
چکیده

Accumulating evidence indicates that Nanog plays a central role in modulating the biological behaviors of human hepatocellular carcinoma (HCC). However, the underlying mechanisms remain unclear. In the present study, we employed transcription activator-like effector nucleases (TALEN) to disrupt Nanog expression in HepG2 cells and obtained subcloned cells with diallelic Nanog mutations. Significantly, we found that the expression of pluripotency factors Sox2, Oct4 and Klf4, as well as expression of cancer stem cell (CSC) marker CD133, in the Nanog-targeted HepG2 cells was markedly downregulated. This finding suggests that Nanog may play an important role in maintaining the pluripotency and malignancy of HepG2 cells. We also revealed that Nanog regulated cell proliferation by modulating the expression of cyclin D1/D3/E1 and CDK2, respectively. Additionally, the disruption of Nanog resulted in the downregulation of epithelial-mesenchymal transition (EMT) regulators Snail and Twist, which contributed to the elevated level of epithelial marker E-cadherin, and to the decreased level of mesenchymal markers N-cadherin and vimentin in the HepG2 cells. In addition, the Nanog-targeted HepG2 cells exhibited reduced ability of invasion, migration and chemoresistance in vitro. In conclusion, the disruption of Nanog expression results in less proliferation, invasiveness, migration, more chemosensitivity and reversal of EMT in HepG2 cells, by which Nanog plays crucial roles in influencing the malignant phenotype of HepG2 cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

TALEN-mediated Nanog disruption results in less invasiveness, more chemosensitivity and reversal of EMT in Hela cells

Emerging evidence suggests that Nanog is involved in cervical tumorigenesis. However, the regulating role of Nanog in tumorigenesis and chemosensitivity are still poorly understood. In this study, Nanog was disrupted by transcription activator-like effector nucleases (TALEN) in Hela cells and its expression was significantly decreased in a single-cell derived sub-clone with biallelic mutations....

متن کامل

The Effects of NDRG2 Overexpression on Cell Proliferation and Invasiveness of SW48 Colorectal Cancer Cell Line

Background: Colorectal cancer (CRC) is one of the most common causes of cancer-related death in the world. The expression of N-myc downstream-regulated gene 2 (NDRG2) is down-regulated in CRC. The aim of this study was to investigate the effect of NDRG2 overexpression on cell proliferation and invasive potential of SW48 cells.Methods: SW48 cells were transfected with a plasmid overexpressing ND...

متن کامل

Downregulation of Kinesin Spindle Protein Inhibits Proliferation, Induces Apoptosis and Increases Chemosensitivity in Hepatocellular Carcinoma Cells

Background: Kinesin spindle protein (KSP) plays a critical role in mitosis. Inhibition of KSP function leads to cell cycle arrest at mitosis and ultimately to cell death. The aim of this study was to suppress KSP expression by specific small-interfering RNA (siRNA) in Hep3B cells and evaluate its anti-tumor activity. Methods: Three siRNA targeting KSP (KSP-siRNA #1-3) and one mismatched-siRNA (...

متن کامل

Knockdown of NANOG enhances chemosensitivity of liver cancer cells to doxorubicin by reducing MDR1 expression.

Multidrug resistance (MDR) is one of the major reasons for the failure of liver cancer chemotherapy, and its suppression may increase the efficacy of chemotherapy. NANOG plays a key role in the regulation of embryonic stem cell self-renewal and pluripotency. Recent studies reported that NANOG was abnormally expressed in several types of tumors, indicating that NANOG is related to tumor developm...

متن کامل

NANOG regulates epithelial–mesenchymal transition and chemoresistance in ovarian cancer

A key transcription factor associated with poor prognosis and resistance to chemotherapy in ovarian cancer is NANOG. However, the mechanism by which NANOG functions remains undefined. It has been suggested that epithelial-to-mesenchymal transition (EMT) also contributes to development of drug resistance in different cancers. We thus determined whether NANOG expression was associated with EMT an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Oncology reports

دوره 35 3  شماره 

صفحات  -

تاریخ انتشار 2016